Strategies to Maximize the Security Efforts into the Agile Software
Development Life Cycle Without Increasing the Headcount

Anderson Maranhdo Ventura Dadario
Information Security
Flare Security, Sdo Paulo, Brazil
anderson@dadario.com.br

Abstract

The Scrum [1] agile methodology is on the rise [2] and the
security analysts need catch up this new approach to software
development in order to minimize the risks and protect the
application and infrastructure. However find the injection points
to apply security are not trivial since Scrum is more complex than
Waterfall methodology [3] and involves four types of meetings,
three roles and three artifacts. This study presents how to
maximize the security resources allocation and how to take
advantage of automation, Extreme Programming [4] engineering
practices and delegation of security responsibilities with security
champions without increasing the headcount.

Keywords: SDLC Security; Agile; Waterfall; Scrum; Extreme
Programming

1. Introduction

The main interest of companies is to maximize business
by matching all customer needs in order to create revenue or
reduce costs [29]. This led companies to rethink processes
that delay or prevent the creation of revenue or increase the
costs, such as Waterfall [3] software development
methodology that started to be replaced by Scrum [1].
However both were not designed with security in mind.

Scrum [1] is an incremental and iterative software
development process that is becoming more popular [2] and
is challenging the information security teams to efficiently
build more secure software, address compliance
requirements and reduce costs [5]. It is challenging because
Waterfall [3], the previous widely used [6] software
development methodology, was simpler, with fewer
interactions and more bureaucratic. Scrum in the other hand
is more complex, with a considerable number of interactions
and less bureaucratic as possible.

2. Security on Scrum

The first attempt to efficiently apply security on Scrum
tends to be the same used on Waterfall [7, 8], by mixing the
security phases within the development phases. Utilizing
this concept, a common approach to Scrum security is to
allocate a security resource to be involved in all types of
meeting: daily, planning, review and retrospective. However,
as the planning meeting [9] can take up to eight hours and
has the purpose to identify the work that need to be
delivered in the end of the current sprint, the security
resource interacts a very few part of his time, compromising

his participation in other activities such as other teams
planning meeting.

The second attempt is to use the time wisely and do not
let the security resources locked up in these longer planning
meetings by introducing a post-planning meeting to discuss
only the selected stories and apply security to them, as
Veracode experimented [10]. The problem with this attempt
is the fact that it breaks the Scrum concept because after a
planning meeting, the stories cannot be changed. This
happens because the stories already were estimated, and the
deliverable is already settled.

The most comprehensive alternative is to add security
acceptance criteria in the stories before the planning
meeting occurs. The meeting that satisfy this need is the
Grooming [11] although it is not part of Scrum. Grooming
meeting happens before the planning meeting and is the
ongoing process of reviewing product backlog items and
checking that they are appropriately prioritised and prepared
in a way that makes them clear and executable for teams
once they enter sprints via the sprint planning activity.

During the Grooming, the security resource can add
security requirements to the acceptance criteria of the
stories and create or update the threat modeling [12] of the
application and document it. With the documentation,
another security resource that was not aware of the
application become able to assist in the acceptance criteria
and perform security tests such as code review [13], design
review [14] or penetration test [15]. Distributing the type of
work within security resources avoid the single point of
failure [16] originated because of the dependency of a single
security resource allocated to all Scrum ceremonies.

Although the maximization of the security resources
allocation efficiency is important to successfully inject
security into the agile software development life cycle, other
aspects propitiated by agile methodologies such as Extreme
Programming engineering practices [17] that combines with
Scrum should also be contemplated.

3. Extreme Programming Engineering Practices

There are twelve extreme programming engineering
practices divided into four areas. As the twelve practices are
focused on the development process, not all of them are
directly related to information security. The most relevant
practices regarding information security are part of the two
areas: “Continuous processes” and



“Shared understanding”.

In the “Continuous processes” area, there are three
practices: “Continuous integration”, “Design improvement”
and “Small releases”. These practices explores the concept
of short but multiple iterations present on Scrum and absent
on Waterfall. The meaning of continuous processes for the
information security team is to split the one-shot risk
analysis, testing and other activities performed only one
time into activities that need to be performed every sprint,
every commit on the source code repository, every release
and so on. However, doing multiple times the same activity
can be time consuming, so what could be automated needs
to be prioritized. This automation can leverage the practice
of “Continuous integration” [18] and “Small releases” by
adding security tests in the build pipeline [19] such as Static
Application Security Testing (SAST) [20] or Dynamic
Application ~ Security Testing (DAST) [21]. The
vulnerabilities found by these tests can be integrated in a
centralized risk management software that will also receive
manual input of manual code reviews and manual
vulnerability analysis. The manual analysis, depending on
the criticism and sensibility of the data stored, processed or
transferred, becomes necessary and preferable over an
automatic analysis given the capacity to overcome the
limitations of automatic analysis such as perform business
logic testing and detect the context of the application
according to the Open Web Application Security Project
(OWASP) Application Security Verification Standard
(ASVS) project [22].

The practice “Design improvement” states that as the
agile methodology focus on delivering only what is needed,
the designed architecture may not support it properly and
should be rebuilded. During this design rebuilding, the
security resource should participate to apply the security
design principles [23] and contribute to architect a solution
that will protect future changes from increasing the attack
surface and mitigate, avoid or transfer future risks.

The “Shared understanding” area covers the practices
“Coding standard”, “Collective code ownership”, “Simple
design” and “System metaphor”, but the last one is only
about naming concepts. “Simple design” is already part of
the security principle known as “Economy of mechanisms”

[24].

The “Coding standard” is the reference that all
developers must have in mind before programming. Given
this importance, there is no better place to define the
defensive coding techniques and other secure code
practices such as the secure coding practices of OWASP
[25].

“Collective code ownership” encourages the developers
to work as team and look at the code as a team responsibility
and not a responsibility of each developer.

This is important to share the duty to secure the
software and do not simply look at a vulnerable code and
left it as it is.

Even following these practices, there is still a challenge
to handle multiple projects with few security resources.
However there are some tasks that can be delegated to
non-security resources that will support the security
resources. Mozilla already define some [26] for their
projects.

4. Security Responsibilities Delegation

As mentioned in the Microsoft Secure Development
Lifecycle (SDL) process guidance [27] and on Mozilla
security champions page [26], exists a role named ‘security
champion’ that is assumed by a development team member
and has the responsibilities of acting in the behalf of the
security resources but with lower autonomy. The person
that will assume this role needs to be properly trained in
more depth than those that only need to attend the general
security awareness training since activities such as
explaining the security vulnerabilities for the team, spread
the Rugged Software manifesto [28] among the team,
identify and document risks and perform secure code review
may become attributions of the security champion.

The election of the security champion may be ad hoc or
through a structure process followed by specific training
and custom certifications accredited by the security team.
The specific training must contemplate the security
champion responsibilities and tasks, and should be
reinforced in a regular basis as any other security awareness
training according to Microsoft SDL [27].

5. Conclusions

Neither the Waterfall and the Scrum methodology were
designed with security in mind, so the security community
needed to identify the injection points to apply security.
The security applied to these methodologies was not mature
in the beginning so the gaps as described in this study were
identified. There is a need to understand both Scrum and
Extreme Programming.

With the understanding of the development
methodologies it was possible to identify that Grooming
meeting are extremely useful to inject security earlier instead
of Planning meetings.

The separation of duties between types of security
resources helps to avoid the single point of failure
originated by the dependency of a single security resource.

The application of the extreme programming engineer
practices mostly related to information security helps to
integrate security seamlessly to the software development
life cycle, as the security champion role also do.

The security champion helps to increase the security



team without adding a new security resource. This benefit
helps to spread security awareness and delegate information
security tasks.

6.

References

[1] http://en.wikipedia.org/wiki/Scrum_(software development
) Retrieved 2014-07-16.

[2] http://www.google.com/trends/explore#q=Scrum&cmpt=q
Retrieved 2014-07-16.

[3] http://en.wikipedia.org/wiki/Waterfall _model Retrieved
2014-07-16.

[4] http://en.wikipedia.org/wiki/Extreme_programming
Retrieved 2014-07-16.

[5] http://www.microsoft.com/security/sdl/about/benefits.aspx
Retrieved 2014-07-16.

[6] http://www.google.com/trends/explore#q=waterfall%20met
hodology Retrieved 2014-07-16.

[7] http://www.onpointcorp.com/uploads/137/doc/Security in_
the_SDLC.pdf Retrieved 2014-07-16.

[8] http://www.rsaconference.com/writable/presentations/file u
pload/asec-107.pdf Retrieved 2014-07-16.

[9] http://en.wikipedia.org/wiki/Scrum_(software development
)#Sprint_planning_meeting Retrieved 2014-07-16.

[10] https://info.veracode.com/webinar-building-security-into-th
e-agile-sdlc.html Retrieved 2014-07-16.

[11] http://en.wikipedia.org/wiki/Scrum_(software development

Y#Backlog_refinement_.28grooming.29 Retrieved
2014-07-16.

[12] http://en.wikipedia.org/wiki/Threat_model Retrieved
2014-07-16.

[13] http://en.wikipedia.org/wiki/Code_review Retrieved
2014-07-16.

[14] https://www.owasp.org/index.php/OWASP_Secure Applica
tion_Design_Project Retrieved 2014-07-16.

[15] http://en.wikipedia.org/wiki/Penetration_test Retrieved
2014-07-16.

[16] http://en.wikipedia.org/wiki/Single point of failure
Retrieved 2014-07-16.

[17] http://en.wikipedia.org/wiki/Extreme programming_practi
ces Retrieved 2014-07-16.

[18] http://en.wikipedia.org/wiki/Continuous_integration
Retrieved 2014-07-16.

[19] http://www.infoq.com/articles/orch-pipelines-jenkins
Retrieved 2014-07-16.

[20] http://en.wikipedia.org/wiki/Static_program_analysis
Retrieved 2014-07-16.

[21] http://blogs.gartner.com/it-glossary/dynamic-application-se
curity-testing-dast/ Retrieved 2014-07-16.

[22] https://www.owasp.org/index.php/Category:OWASP_Appli
cation_Security Verification_Standard Project Retrieved
2014-07-16.

[23] https://buildsecurityin.us-cert.gov/articles/knowledge/princi
ples/design-principles Retrieved 2014-07-16.

[24] https://buildsecurityin.us-cert.gov/articles/knowledge/princi
ples/economy-of-mechanism Retrieved 2014-07-16.

[25] https://www.owasp.org/index.php/OWASP_Secure Coding_

Practices_-_Quick_Reference_Guide Retrieved
2014-07-16.

[26] https://wiki.mozilla.org/Security/Champions Retrieved
2014-07-16.

[27] http://www.microsoft.com/en-us/download/details.aspx?id=
29884 Retrieved 2014-07-16.

[28] https://www.ruggedsoftware.org/ Retrieved 2014-07-16.

[29] http://en.wikipedia.org/wiki/Profit_motive Retrieved
2014-07-16.



